pengertian tabung kerucut dan bola

DefinisiTabung. Tabung merupakan bangun ruang yang memiliki sisi lengkung.Tabung memiliki 3 bidang sisi utama yaitu bidang sisi alas yang disebut alas tabung, bidang lengkung yang disebut dengan selimut tabung dan bidang atas yang disebut tutup tabung.Sisi alas dan sisi atas tabung ini berbentuk lingkaran yang kongruen dan sejajar.Unsur-unsur tabung terdiri dari jari-jari, diameter, dan Pengertian Bangun ruang sisi lengkung adalah bangun ruang yang memiliki selimut dan memiliki bagian - bagian yang berupa lengkungan. Yang termasuk dalam bangunruang sisi lengkung adalah : 1.Tabug. 2.kerucut. 3.Bola. Simbol - simbol yang harus di ketahui ,antara lain : La = Luas alas. t = Tinggi. r = jari - jari lingkaran. π = terdiri PengertianBangun Ruang. Bangun ruang adalah sebutan atau penamaan untuk beberapa bangun-bangun yang memiliki volume atau ruang yang dibatasi oleh sisi-sisinya yang biasa disebut tiga dimensi. Bangun ruang terdiri dari tiga komponen utama sebagai berikut. Sisi merupakan bidang yang membatasi antara bangun ruang dengan ruangan sekitarnya. Kerucutadalah suatu bangun ruang yang dibatasi oleh dua sisi, yaitu sisi alas dan sisi lengkungnya. Sama halnya dengan tabung sisi alas dari kerucut berbentuk lingkaran sedankan sisi lengkungnya disebut selimut kerucut. TabungKerucut Dan Bola 9.1. Tabung Kerucut Dan Bola 9.1 Untuk materi ini mempunyai 3 Kompetensi Dasar yaitu: Kompetensi Dasar : belajar bahasa inggris. Swara Bhaskara : 20 April 2010 at 17:59 Ya betul, dua-duanya dapat diartikan "lampiran". Istilah "appendix" digunakan di buku atau thesis/ Site De Rencontre 100 Gratuit Pour Femme. Rumus Dan Pengertian Tabung, Kerucut, Dan Bola Pengertian Tabung Tabung adalah bangun ruang yang diatasi oleh dua sisi yang kongruen dan sejajar yang berbentuk lingkaran serta sebuah sisi lengkung. Sifat - Sifat Tabung 1. Mempunyai 3 sisi 2. 2 sisi berupa lingkaran dan 1 sisi persegi panjang yang dilengkungkan menurut keliling lingkaran 3. Volume didapat dari luas lingkaran dikali tinggi tabung 4. Luas selimutnya perkalian keliling lingkaran dengan tinggi tabung Gambar Tabung Rumus Tabung Volume tabung = luas alas X kali tinggi Luas alas = luas lingkaran = πr² Yang Berarti Volume tabung = π r² t Keliling lingkaran alas/tutup = 2πr Luas Selimut = 2πrt Luas Permukaan Tabung = 2 π r r + t dengan tutup π r r + 2 t tanpa tutup Jaring - jaring Tabung Pengertian Kerucut Kerucut adalah bangun ruang yang dibatasi oleh sebuah sisi alas berbentuk lingkaran dan sebuah sisi lengkung. Sifat - Sifat Kerucut 1. Mempunyai sisi tegak yang disebut selimut 2. Punya satu buah sisi berbentuk lingkaran 3. Volume di dapat dari perkalian luas lingkaran alas dengan tinggi tabung dan faktro pengali 1/3 4. Luas selimut phi r S dengan s adalah di dapat dari pythagoras jari-jari dengan tinggi tabung Gambar Kerucut Rumus Kerucut Volume Kerucut = 1/3 π r² t Luas Alas Kerucut = π r² Luas Selimut Kerucut = π r r + s Luas Kerucut = luas sisi alas + luas selimut kerucut Jaring - jaring Kerucut Pengertian Bola Bola adalah bidang lengkung yang terjadi jika sebuah setengah linkaran diputar sekeliling garis tengahnya. Sifat - Sifat Bola 1. Mempunyai satu sisi 2. Tidak mempunyai titik sudut 3. Tidak mempunyai bidang datar 4. Hanya mempunyai satu sisi lengkung tertutup Gambar Bola Rumus Bola Volume Bola = 4/3 π r3 Luas Bola = 4 π r² Luas Setengah Bola = 2π r² Volume setengah bola = 2/3 π r3 Luas setengah bola padat = 3π r² LATIHAN mempunyasi sebuah Kaleng Berbentuk Tabung dengan ukuran tinggi = 18cm dan diameter = 42cm. Tentukan a. Volumenya b. Luasnya 2. Diketahui tinggi kerucut = 12 jari jari = 35 Tentukan Volumenya memiliki bola yang besar dengan Jari jari 21cm. tentukan volumenya! Jawaban 1. d=2r 42=2r r=21cm a. Volume tabung = π r X r t =22/7 X 21 X 21 X 18 =66 X 21 X 18 =24 948 cm3 b. Luas Permukaan Tabung = 2 π r r + t =2 X 22/7 X 21 X 21 + 18 =2 X 66 X 39 =132 X 39 =5 148 cm2 2. Volume Kerucut = 1/3 π rX r t = 1/3 X 22/7 X 35 X 35 X 12 = 4 X 3850 =15 400 cm3 3. Volume Bola = 4/3 π r² t = 4/3 X 22/7 X 21 X 21 X 21 = 4/3 X 66 X 21 X 21 =264 X441 =29 106 cm3 Kerucut Pengertian, Unsur, Jaring, Rumus dan Contoh SoalKerucut Pengertian, Unsur, Jaring, Rumus dan Contoh Soal – Masih ingat dengan pembahasan sebelumnya mengenai bangun ruang yang disebut limas? Nah, kali ini akan dibahas mengenai bangun ruang limas istimewa, yaitu kerucut dikatakan limas istimewa? Ya, karena kerucut sebenarnya adalah bentuk limas dengan sisi alas berbentuk lingkaran. Karena bentuk sisi alasnya sangat beraturan, maka sisi selimutnya tidak lagi berbentuk segitiga, melainkan berupa bagi yang belum paham apa yang dimaksud dengan kerucut, silahkan simak artikel ini sampai selesai, karena akan dibahas secaa lengkap mengenai pengertian kerucut, unsur-unsur kerucut, jaring-jaring kerucut, rumus volume dan luas permukaan kerucut beserta contoh adalah bangun ruang yang memiliki dua buah sisi, satu buah rusuk dan satu buah titik sudut. Salah satu sisinya adalah alas kerucut yang berbentuk lingkaran dan sisi yang lain merupakan selimut termasuk dalam penggolongan bangun ruang sisi lenggkung. Karena memiliki sisi berbentuk lengkungan, yaitu selimut kerucut. Selimut kerucut menguncup pada ujungnya dan membentuk titik satu benda dalam kehidupan sehari-hari yang memiliki bentuk kerucut adalah es krim cone. Es krim cone adalah es krim yang memiliki gagang menguncup dan membentuk sudut di ujung KecurutDalam pembahasan kerucut, terdapat istilah yang dinamakan irisan kerucut. Irisan kerucut adalah lokus dari semua titik yang membentuk kurva dua dimensi yang terbentuk oleh irisan sebuah kerucut dengan sebuah bidang datar. Terdapat empat jenis irisan kerucut, yaituIrisan Parabola, irisan dengan bentuk parabola akan diperoleh jika sebuah bidang datar memotong satu Hiperbola, irisan dengan bentuk hiperbola akan diperoleh jika sebuah bidang datar memotong dua Lingkaran, irisan dengan bentuk lingkaran akan diperoleh jika sebuah bidang datar memotong satu kerucut secara tegak lurus dengan garis sumbu Elips, irisan dengan bentuk elips akan diperoleh jika sebuah bidang datar memotong satu kerucut secara tidak tegak lurus dengan garis sumbu KerucutSetiap bangun ruang memiliki unsur-unsur atau bagian-bagian pembentuknya. Nah, berikut merupakan unsur-unsur bangun ruang Kerucut1. Sisi KerucutKerucut memiliki dua buah sisi, yaitu sisi alas dan sisi selimut kerucut. Sisi alas kerucut berbentuk lingkaran. Oleh sebab itu, alas kerucut memiliki jari-jari dan diameter. Jari-jari alas kerucut adalah jarak sisi alas dengan titik pusat alasnya. Sedangkan diameter kerucut adalah jarak antar sisi yang melewati titik pusat kerucut adalah sisi miring yang berbentuk lengkungan dari puncak kerucut hingga alas kerucut. Jika sebuah kerucut dibuka, maka selimut kerucut memili bentuk juring Rusuk KerucutRusuk kerucut adalah garis pertemuan antara sisi alas dengan selimut kerucut. Kerucut memiliki 1 buah rusuk, yaitu rusuk yang terdapat pada sisi alasnya yang juga merupakan keliling lingkaran alas Titik SudutSebuah kerucut memiliki 1 buah titik sudut. Titik sudut kerucut merupakan bagian ujung selimut kerucut yang menguncup. Titik sudut kerucut disebut juga sebagai titik puncak Garis PelukisJarak dari puncak kerucut hingga alasnya membentuk garis-garis semu yang sering disebut dengan garis pelukis Tinggi KerucutTinggi Kerucut adalah jarak dari titik pusat alas kerucut dengan titik puncak kerucut. Tinggi kerucut, garis pelukis kerucut dan jari-jari kerucut akan membentuk sebuah segitiga siku-siku. Sehingga dapat dinyakatan dengan rumus = t² + r²t² = s² – r²r² = s² – t²Keterangans = garis pelukis kerucutt = tinggi kerucutr = jari-jari alas kerucutJaring-Jaring KerucutJika sebuah bangun kerucut dibuka, maka akan diperoleh jaring-jaring kerucut. Jaring-jaring kerucut terdiri dari dua buah bidang, yaitu lingkaran dan juring lingkaran merupakan bentuk dari sisi alasnya, sedangkan juring lingkaran merupakan bentuk dari selimut kerucut. Di bawah ini merupakan contoh gambar KerucutRumus Volume dan Luas KerucutSetiap bangun ruang memiliki volume dan luas permukaan. Berikut akan dijelaskan rumus-rumus yang digunakan untuk menghitung volume kerucut dan luas permukan Rumus Volume KerucutVolume kerucut adalah seberapa besar ruangan di dalam kerucut yang mampu ditempati. Dalam suatu ekperimen menyatakan volume kerucut sama dengan 1/3 volume tabung. Rumus volume tabung adalah luas alas dikali tinggi tabung. Dengan begitu, untuk menghitung volume kerucut adalah 1/3 x luas alas x tinggi kerucut memiliki bentuk lingkaran, dimana rumus luas lingkaran adalah π x r². Sehingga, diperoleh kesimpulan rumus untuk menghitung volume kerucut adalah sebagai Volume Kerucut = 1/3 x π x r² x tKeteranganπ = 22/7 atau 3,14r = jari-jari alas kerucutt = tinggi kerucutSatuan volume adalah satuan panjang kubik pangkat 3, misalnya m3, cm3, mm3B. Rumus Luas Permukaan KerucutLuas permukaan kerucut adalah luas seluruh bidang penyusun kerucut. Dengan melihat gambar jaring-jaring kerucut di atas, kerucut terdiri dari sebuah lingkaran dan juring lingkaran. Dengan begitu, luas permukaan kerucut adalah luas lingkaran ditambah luas juring lingkaran = π x r²Luas juring lingkaran = π x r x sLuas Permukaan Kerucut = π x r² + π x r x sRumus Luas Permukaan Kerucut = π x r r + sKeteranganπ = 22/7 atau 3,14r = jari-jari kerucuts = garis pelukis kerucutSatuan luas adalah satuan panjang persegi pangkat 2, misalnya m2, cm2, mm2Contoh Soal Menghitung Volume dan Luas Kerucut1. Diketahui sebuah alas kerucut memiliki jari-jari 7 cm dan tinggi kerucut adalah 12 cm. Hitunglah berapa volume kerucut tersebut!JawabanV = 1/3 x π x r² x tV = 1/3 x 22/7 x 7² x 12V = 1/3 x 22/7 x 49 x 12V = 1/3 x 1848V = 616 cm32. Sebuah kerucut memiliki jari-jari alas 7 cm dan panjang garis pelukisnya adalah 25 cm. Hitunglah berapa volume kerucut tersebut!JawabanKarena tinggi kerucut belum diketahui, maka kita harus mencarinya terlebih = s² – r²t² = 25² – 7²t² = 625 – 49t² = 576t = √576t = 24 cmSetelah diketahui tinggi kerucut, kita hitung volume = 1/3 x π x r² x tV = 1/3 x 22/7 x 7² x 24V = 1/3 x 22/7 x 49 x 24V = 1/3 x 3696V = 1232 cm33. Sebuah kerucut memiliki jari-jari alas 14 cm dan panjang garis pelukisnya 20 cm. Hitunglah berapa luas permukaan kerucut tersebut!JawabanL = π x r r + sL = 22/7 × 14 14 + 20L = 44 x 34L = cm2Demikianlah pembahasan mengenai bangun ruang kerucut yang meliputi pengertian kerucut, unsur-unsur kerucut, jaring-jaring kerucut, rumus volume kerucut, rumus luas permukaan kerucut dan contoh soalnya. Semoga Bangun Ruang Lainnya Sifat-sifat tabung, kerucut dan bola akan dibahas lengkap pada materi pelajaran matematika sebagai berikut ini. Adapun point-point pokok pembahasan tentang Ciri-Ciri / Sifat Tabung, Kerucut Dan Bola yang akan di bahas didalam materi pendidikan matematika adalah antara lain 1. Sifat-sifat tabung. 2. Sifat-sifat kerucut. 3. Sifat-sifat bola. 1. Sifat-sifat tabung Tabung adalah bangun ruang sisi lengkung yang menyerupai prisma dengan bidang alasnya berbentuk lingkaran. Contoh benda-benda yang umumnya berbentuk tabung adalah antara lain misalnya gelas, tong sampah, musik drum, bedug, kaleng dan lain sebagainya. Benda-benda tersebut apabila digambar menjadi seperti yang terlihat pada gambar tabung dibawah. Sifat-sifat tabung adalah antara lain yakni sebagai berikut a. Tabung memiliki tiga sisi, yaitu 2 sisi alas dan 1 sisi selimut. b. Sisi alas, yaitu sisi yang berbentuk lingkaran dengan pusat P1, dan sisi atas yaitu sisi yang berbentuk lingkaran dengan pusat P2. c. Sisi alas dan sisi atas merupakan dua lingkaran yang saling kongruen. d. Selimut tabung, yaitu sisi lengkung tabung sisi yang tidak diarsir. e. Diameter lingkaran alas, yaitu ruas garis AB, dan diameter lingkaran atas, yaitu ruas garis CD. f. Jari-jari lingkaran alas r, yaitu garis P1A dan P1B, serta jari-jari lingkaran atas r, yaitu ruas garis P2C dan P2D. g. Tinggi tabung, yaitu panjang ruas garis P2P1, DA, dan CB. 2. Sifat-sifat kerucut Kerucut adalah bangun ruang sisi lengkung yang menyerupai limas yang bidang alasnya berbentuk lingkaran. Contoh benda-benda yang umumnya berbentuk kerucut adalah antara lain misalnya caping, topi ulang tahun, terompet dan bentuk nasi tumpeng. Jika dicermati bentuknya, benda-benda tersebut berbentuk kerucut. Bentuk kerucut apabila digambar menjadi seperti yang terlihat pada gambar kerucut diatas. Sifat-sifat kerucut adalah antara lain yakni sebagai berikut a. Kerucut memiliki 2 sisi berbentuk lengkung, yaitu sisi alas dan sisi selimut. b. Bidang alas, yaitu sisi yang berbentuk lingkaran daerah yang arsir. c. Jari-jari bidang alas r, yaitu garis OA dan ruas garis OB, sedangkan dua kali jari-jari alasnya disebut dengan diameter d, yaitu ruas garis AB. d. Selimut kerucut, yaitu sisi kerucut yang tidak diarsir. e. Tinggi kerucut t, yaitu jarak dari titik puncak kerucut ke pusat bidang alas ruas garis CO. f. Memiliki sebuah titik puncak g. Garis pelukis s, yaitu garis-garis pada selimut kerucut yang ditarik dari titik puncak C ke titik pada lingkaran. h. Memiliki 1 rusuk lengkung. Hubungan antara r, s dan t pada kerucut dinyatakan dengan persamaan-persamaan sebagai berikut S2 = r2 + t2 r2 = s2 - t2 t2 = s2 - r2 3. Sifat-sifat bola Bola adalah bangun ruang sisi lengkung yang dibatasi oleh satu bidang lengkung. Contoh benda-benda yang umumnya berbentuk bulat bola adalah antara lain misalnya bola sepak, bola pingpong, bola kasti dan bola voli. Bentuk pola dapat dibentuk dari bangun setengah lingkaran yang diputar sejauh 360o pada garis tengahnya. Perhatikan Gambar a diatas merupakan gambar setengah lingkaran. Jika bangun tersebut diputar 360o pada garis tengah AB, diperoleh bangun seperti pada gambar b, yang dinamakan dengan bola. Sifat-sifat ruang bola adalah antara lain yakni sebagai berikut a. Bola memiliki satu sisi dan tidak memiliki rusuk. b. Titik O dinamakan titik pusat bola. c. Ruas garis OA=OB dinamakan jari-jari bola. d. Ruas garis AB dinamakan diameter bola. Jika kamu amati, ruas garis Ab juga merupakan diameter bola. AB dapat pula disebut dengan tinggi bola. e. Sisi bola adalah kumpulan titik yang mempunyai jarak sama terhadap titik O. Sisi tersebut dinamakan selimut atau kulit bola. f. Ruas garis ACB dinamakan tali busur bola. Demikian pembahasan mengenai sifat-sifat tabung, kerucut dan bola. Kalau kamu tertarik untuk mempelajari tentang seluk beluk perhitungan dari tabung, kerucut, dan bola dalam matematika, simak video pembahasannya di sini. Kami juga telah menyiapkan kuis berupa latihan soal dengan tingkatan yang berbeda-beda agar kamu bisa mempraktikkan materi yang telah soal-soal geometri dimensi tiga, tabung, kerucut & bola merupakan 3 jenis bangun ruang yang akan kamu pelajari dengan seksama. Dalam materi ini, kamu akan mendalami mengenai sifat-sifat bangun dan pengukuran volume dan luas ketiga bangun ruang tersebut. Materi ini amat penting untuk kamu pelajari guna melengkapi ilmu geometri yang sudah kamu pelajari sebelumnya. Sebagai awalan kamu untuk belajar, kamu bisa mencoba untuk mempelajari semua hal mengenai tabung. Tabung atau silinder bisa didefinisikan sebagai sebuah bangun ruang yang dibatasi oleh dua sisi yang kongruen dan sejajar yang berbentuk lingkaran serta sebuah sisi lengkung. Bangun ini memiliki sifat-sifat antara lain bagian alas dan tutup berbentuk lingkaran yang besarnya sama, memiliki 3 sisi, tidak memiliki titik sudut, dan memiliki 2 buah rusuk. Selanjutnya, kamu bisa lanjut ke bangun ruang berikutnya, yaitu kerucut. Bangun ruang kerucut bisa diartikan sebagai suatu bangun ruang yang merupakan limas beraturan yang bidang alasnya berbentuk lingkaran. Bangun ini memiliki sifat-sifat antara lain memiliki 2 sisi, memiliki 1 rusuk, dan memiliki 1 titik puncak. Ketika mendengar kata bola’, tentunya kamu akan langsung terpikir mengenai olahraga sepakbola. Ya, untuk membuat bentuk bola yang baik, para pembuat harus tahu persis sifat dari bangun bola dan pengukuran volume dan luas bola yang akan dibuat. Alhasil, bola yang dihasilkan akan lebih nyaman dan lebih mudah untuk dimainkan. Tabung, kerucut & bola merupakan 3 bangun ruang yang akan melengkapi ilmu pengetahuanmu, terutama dalam materi geometri. Memahami dan mengerti sifat-sifat dan pengukuran bangun ruang tersebut menjadikan kamu terampil dalam melakukan pengukuran, baik dalam matematika maupun kehidupan sehari-hari. Wardaya College siap memberikan puluhan video pembelajaran yang akan menjelaskan kepada kamu mengenai pengukuran ketiga bangun tersebut. Ketika kamu memahami materi tersebut, kamu bisa mencoba setiap contoh soal bangun ruang yang Wardaya College berikan. Untuk mulai belajar rumus luas serta rumus volume tabung, kerucut, & bola kamu bisa langsung klik daftar materi dibawah ini. Tabung Silinder Video Pembelajaran Lengkap dengan Contoh Soal & Pembahasan Quiz – Latihan Soal Interaktif Mudah, Sedang & Sukar Video Pembelajaran Lengkap dengan Contoh Soal & Pembahasan Quiz – Latihan Soal Interaktif Mudah, Sedang & Sukar Bola Video Pembelajaran Lengkap dengan Contoh Soal & Pembahasan Quiz – Latihan Soal Interaktif Mudah, Sedang & Sukar Lagi galau? Coba deh simak kutipan kata kata bikin baper di artikel ini. Siapa tahu ada yang menggambarkan perasaanmu saat ini. 0% found this document useful 0 votes2K views19 pagesCopyright© Attribution Non-Commercial BY-NCAvailable FormatsPPTX, PDF, TXT or read online from ScribdShare this documentDid you find this document useful?0% found this document useful 0 votes2K views19 pagesTabung, Kerucut, Dan BolaJump to Page You are on page 1of 19 You're Reading a Free Preview Pages 7 to 17 are not shown in this preview. Reward Your CuriosityEverything you want to Anywhere. Any Commitment. Cancel anytime.

pengertian tabung kerucut dan bola